Tourism and environmental quality: a dynamic interaction for the Caribbean

Central Bank of Suriname November 7-9, 2012 Suriname

Agustín Pérez-Barahona

INRA and École Polytechnique (France)

1.- Introduction:

- The United Nations Environment Programme points out the interaction between tourism and environmental quality.
- Double causality:
 - Environmental quality \Rightarrow tourism:
 - * Raising number of tourists seeking for destinations in environmental hotspots (Christ et al., 2003).
 - * Environmental protection projects encourage tourist activities (Font, 2000).
 - Tourism \Rightarrow environmental quality:
 - * Negative environmental impact of tourism (e.g., Green et al., 1990; Green and Hunter, 1992; Gossling et al., 2002; Brei et al., 2012).
- This double causality is very important for the Caribbean:
 - The rich environmental quality of the Caribbean makes it one of the most appealing destinations for tourism.
 - The environmental deterioration due to tourism negatively affects the growth prospects of these countries.

- Small Island Developing States (SIDS):
 - Tourism and SIDS: one of the few activities for which their location and environments \Rightarrow strong comparative advantage (UNWTO, 2012).
 - Some figures (UNWTO, 2012):
 - * In the last decade, the number of international tourists visiting SIDS destinations increased by over 12 million to reach 41 million in 2011.
 - * The tourism sector accounts for more than half of the exports in at least 12 SIDS.
 - * Over one quarter of the Gross Domestic Product (GDP) in at least seven of them.
 - * International tourism has increased fastest in the less developed SIDS.

– Sustainable tourism:

- * Double causality between tourism and environmental quality \Rightarrow careful planning and management.
- * Sustainable tourism: important contributor to employment, foreign exchange and economic growth.

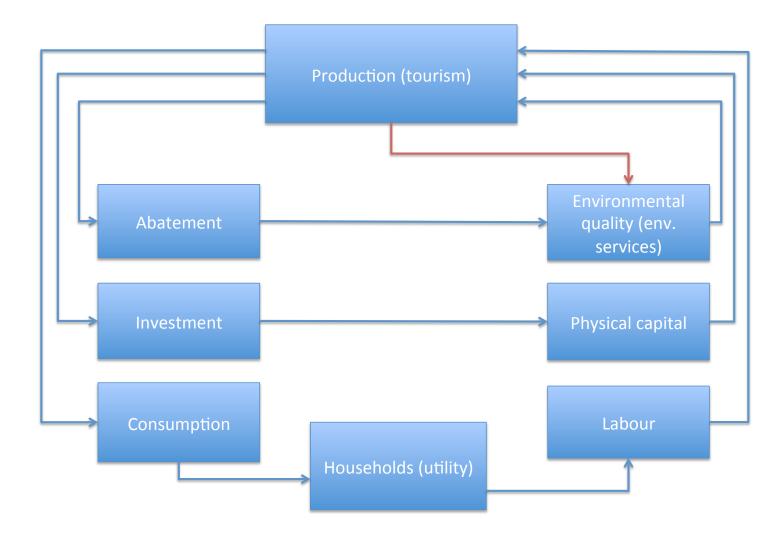
This paper: we study the dynamical interaction between tourism and environmental quality.

- We construct an economic framework to study the dynamical dimension of this interaction.
- Dynamical properties of the problem:
 - Social optimum.
 - Analytical characterization of these properties:
 - * Long and short run dynamics: sustainable tourism.
 - * Imbalance effects between physical capital and environmental quality: Environmental Kuznets Curve.

2.- The model:

- Technology: Y(t) = F(E(t), L(t), K(t)). E.g., $F(\cdot) = AE(t)^{\alpha}L(t)^{\beta}K(t)^{\gamma}$, with $\alpha + \beta + \gamma = 1$
- Economy's budget constraint: Y(t) = M(t) + I(t) + C(t)
- Individual's utility function: u(C(t))

The model (cont.):


- Law of motion of environmental quality: $\dot{E}(t) = \sigma M(t) \epsilon E(t) \zeta Y(t)$
- Law of motion of physical capital: $\dot{K}(t) = I(t) \delta K(t)$
- Population growth: $L(t) = N(0) \exp(nt)$
- Social optimum problem: let's define $x(t) \equiv \frac{X(t)}{L(t)}$

$$\max_{\{c,m\}} \int_0^\infty u(c(t)) \exp(-(\rho - n)t) dt$$

subject to

$$\begin{cases} \dot{k}(t) = f(e(t), k(t)) - m(t) - c(t) - (\delta + n)k(t), \\ \dot{e}(t) = \sigma m(t) - (\epsilon + n)e(t) - \zeta f(e(t), k(t)), \\ e(0), k(0) \text{ given.} \end{cases}$$

The model (cont.):

3.-Steady-state equilibrium (st/st):

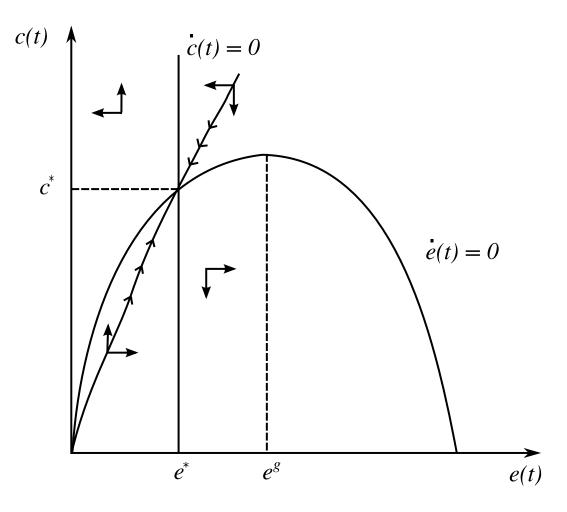
- Definition of st/st: $\dot{c}(t) = \dot{m}(t) = \dot{e}(t) = \dot{k}(t) = 0$
- Given by:

$$(\sigma - \zeta)f_e^{\prime *} = \epsilon + \rho \qquad \qquad \frac{\sigma - \zeta}{\sigma}f_k^{\prime *} = \delta + \rho$$
$$m^* = \frac{1}{\sigma}[\zeta f(e^*, k^*) + (n + \epsilon)e^*] \quad c^* = f(e^*, k^*) - m^* - (\delta + n)k^*$$

- Results:
 - The st/st exists (and is unique) iff the efficient of abatement is greater than the negative effect of tourism: $\sigma > \zeta$
 - Environmental quality and physical capital are strictly positive in the st/st: $e^*, k^*, m^*, c^* > 0$
 - Comparative statics: if we reduce the negative impact of tourism, ζ , (e.g., ecotourism instead of regular tourism) environmental quality increases as well as physical capital and GDP in the long-run.

4.- Dynamics:

- Malgararian's sufficient conditions: FOC are necessary and sufficient.
- Dynamical system: $\{c(t), e(t), k(t)\}$


$$\begin{cases} \frac{\dot{c}(t)}{c(t)} = \frac{1}{\varepsilon(c(t))} \left[(\sigma - \zeta) f'_e - (\epsilon + \rho) \right], \\ \dot{e}(t) = (\sigma - \zeta) f(e(t), k(t)) - \sigma \left[c(t) + (\delta + n)k(t) + \dot{k}(t) \right] - (\epsilon + n)e(t)), \\ g(e(t), k(t)) = 0. \end{cases}$$

- In general $g(\cdot)$ is not linear. However, we can prove: k(t) = h(e(t)), where $h(\cdot)$ is unique (and strictly increasing) \Rightarrow we reduce the system to $\{c(t), e(t)\}$.
- Analytical results: let us assume Cobb-Douglas production function.

Dynamics (cont.):

- Results: stability
 - Local dynamics.
 - Stability is not possible.
 - However, it is possible to have saddle point stability \Rightarrow unique stable arm:
 - * It depends on the characteristics of the economy.
 - * SIDS \Rightarrow saddle point stability:
 - · Physical capital depreciates more than the environmental quality: $\delta > \epsilon$,
 - \cdot the share of physical capital in the GDP is small: $\gamma < \overline{\gamma}$
 - · and the share of environmental quality in the GDP is high: $\alpha > \overline{\alpha}$.
 - * Unique stable arm \Rightarrow careful planning and management (UNWTO, 2012).

• Results: stability (cont.)

Dynamics (cont.):

- Results: imbalance effect
 - Let us recall:

$$\begin{cases} \dot{e}(t) = i_e(t) - (\epsilon + n)e(t), \\ \dot{k}(t) = i_k(t) - (\delta + n)k(t). \end{cases}$$

- We know that k(t) = h(e(t)): e.g, $\frac{k(t)}{e(t)} = \frac{1}{\sigma} \frac{\gamma}{\alpha}$, for $\delta = \epsilon$.
- k(0) and e(0) are given. But it may happen that $k(0) \neq h(e(0)) \Rightarrow$ imbalance effect:
 - * $k(0) < h(e(0)) \Rightarrow i_k(t) > 0$ and $i_e(t) \le 0$ (e.g., SIDS).
 - * $k(0) > h(e(0)) \Rightarrow i_k(t) = 0$ and $i_e(t) > 0$.
- Imbalance between environmental quality and physical capital ⇒ Enviromental Kuznet Curve.

5.- Conclusions:

- Double causality between tourism and environmental quality.
- We propose a theoretical framework to study the dynamical dimension of this interaction:
 - Tourism can guarantee positive levels of environmental quality and GDP in the long run.
 - But a careful planning and management is required (*saddle point stability*).
 - Possibility of imbalance effects.
- Sustainable tourism seems to be a good strategy for the Caribbean and, in particular, the SIDS.

6.- Extentions:

- Speed of convergence.
- Endogenous growth.
- Empirical quantification of the double causality.