Business cycle symmetry and risk sharing - the Caribbean as an OCA?

REGAN DEONANAN SEPTEMBER 15TH, 2011

Motivation – Big picture

- 1. Historic and recent interest by Caribbean countries in forming monetary union (ie. OCA)
 - OCA benefits: lowering transactions costs \rightarrow increasing trade
 - OCA costs: must give up control over interest/exchange rates
 - Integration/co-operation of region imperative to future economic survival due to small size of candidate countries

2. Caribbean focus on OCA formation not unique

- Asia ASEAN+3 moving towards Asian Economic Community (AEC) by 2015
- South America UNASUR propose monetary union by 2019
- Middle East GCC initially proposed monetary union in 2010

Motivation - Big picture

Policymakers currently questioning nature and type of integration needed given EU and global difficulties

"But with the challenges unfolding today globally, we will have to slow the pace a bit and take a much more realistic perspective of where we have to go in the integration movement." - Dr. Denzil Douglas, July 2011

Indicative of need for continuing research aimed at addressing where do we go as a region

What I do

1. Take stock of where we are

1. Start from last proposal – forming monetary union

2. Central questions

- 1. From a positive viewpoint, can the Caribbean form a viable OCA?
- 2. How does it compare to other proposed unions?

3. Empirical investigation

- 1. Assess degree of business cycle symmetry among proposed OCAs and EU
- 2. Get a sense of how costly union would be
- 3. Builds on previous work by applying newer methods

Previous Literature

Ghartey (2008) examined business cycle symmetry using VECM model

- Isolated supply and demand shocks
- Looked at correlation low for some countries
- Shocks driving business cycle different

Useful/valiant attempt but

- No OCA perfect how far?
- Cannot address source of shocks

Builds on prior work by examining bc symmetry from different perspective

• Global, regional and country-specific factors driving each country

Business cycle symmetry - Intuition

1. Perfectly symmetric business cycles – 2 countries

- Response of common central bank would be same as independent central banks
- No welfare loss from losing independence

2. Asymmetric business cycles – 2 countries

- Country 1 experiencing a boom, country 2 a recession
- o Country 1 would like high interest rates to control inflation
- o Country 2 would like low interest rates to stimulate investment
- A common central bank setting interest rates between these extremes means neither achieves objectives
- o Loss in independence now represents loss in welfare
- o Size of loss in welfare is greater the more asymmetric the two countries business cycles

3. Takeaway – for OCA to be viable

- Need for business cycle symmetry
- Less loss in welfare

Empirical Methodology - intuition

Business cycles driven by 3 influences: Global, regional, country-specific

If driving forces similar, then business cycle similar

Degree of similarity given by: % growth driven by common factors

• Example: if common influences account for 80% of growth in 2 countries vs. 20% for 2 other countries, first group more similar

Empirical Methodology - Symmetry

Dynamic factor model – unobserved latent factors

• Three shocks (latent factors) affecting output growth in each country: global, regional, country-specific

$$y_{i,t} = \lambda_i^g f_t^g + \lambda_i^r f_{j,t}^r + \varepsilon_{i,t}$$

o Latent factors are orthogonal to each other and follow AR processes

$$f_{t}^{g} = \rho_{1}^{g} f_{t-1}^{g} + \rho_{2}^{g} f_{t-2}^{g} + \eta_{t}^{g}$$

$$f_{j,t}^{r} = \rho_{1,j}^{r} f_{j,t-1}^{r} + \rho_{2,j}^{r} f_{j,t-2}^{r} + \eta_{j,t}^{r}$$

$$\varepsilon_{i,t} = \rho_{1,i} \varepsilon_{i,t-1} + \rho_{2,i} \varepsilon_{i,t-2} + \eta_{i,t}$$

• Assume:
$$\eta_{i,t}$$
 $\eta_{j,t}^r$ η_t^g follow $N(0,\sigma_i^2)$ $N(0,\sigma_{r,j}^2)$ $N(0,\sigma_g^2)$

• Latent factors are uncorrelated at all leads and lags

$$E(\eta_{t}^{g}\eta_{t-s}^{g}) = E(\eta_{j,t}^{r}\eta_{j,t-s}^{r}) = E(\eta_{i,t}\eta_{i,t-s}) = 0$$

Empirical Methodology - Symmetry

- 1. Estimate factors and parameters
- 2. Decompose output growth into portions attributable to each factor

• where
$$\operatorname{var}(y_{i,t}) = (\lambda_i^g)^2 \operatorname{var}(f_t^g) + (\lambda_i^r)^2 \operatorname{var}(f_{j,t}^r) + \operatorname{var}(\varepsilon_{i,t})$$

1. Intuition

The greater the amount of output growth attributable to common factors, the greater business cycle symmetry among candidates

Empirical Methodology - Symmetry

1. Include 6 regions in model:

- 1. NAFTA, EU, CSME, UNASUR, GCC, ASEAN+3
- 2. 60 countries over 1986-2009
- 3. Data taken from WEO, WDI, IFS (annual)

2. Two periods

- Pre-EU: 1986-1998
- Post-EU: 1999-2009

Results 1 – Estimated Factors

Results 2– Output Decomposition: Caribbean vs EU

CSME (1999-2009)

EU (1986-1998)

Results 4– Comparing proposed OCAs across periods

ASEAN+3

CSME

EU

Results 5– Comparing proposed OCAs across periods

GCC

- 1. Proposed OCAs just as symmetric in post period as EU in pre period
- 2. Caribbean experience resembles that of ASEAN+3 and EU
- 3. GCC and UNASUR experience was very different regional factor more prominent

Related Literature

1. Ghartey – Economic Studies of International Development, 2008

- 1. Investigates Caribbean as a potential OCA
- 2. Uses correlation of demand and supply shocks among members to assess symmetry

2. Nguyen – DEPOCEN, 2008

- Investigates ASEAN+3 countries as potential OCA
- Uses dynamic factor model with many regions

3. Kose, Otrok, Whiteman (KOW) – AER, 2003

- Study prevalence of world and regional business cycles
- Use dynamic factor model with many regions