Transition Probability Matrices, Revealed Comparative Advantage Persistence and the Dutch Disease in a small oil-based economy

By: Damie Sinanan and Dr. Roger Hosein

42nd Annual Monetary Studies Conference
"Financial Stability, Crisis Preparedness and Risk Management in the
Caribbean"

November 9th-12th 2010, Port of Spain, Trinidad

Objective

- To explore persistence in RCA in Trinidad and Tobago over the period 1991 – 2008
- To analyze the pattern of exports in Trinidad and Tobago
- To explore how the Dutch Disease syndrome has affected the pattern of exports.
- Associated policy recommendations

Revealed Comparative Advantage

- Balassa (1965) suggested that comparative advantage could be "revealed" by observed trade patterns that reflect differences in factor endowments across nations.
- Measuring RCA using the Balassa Index the most widely used index in the literature
- Calculating the average index for 91 93 and 06-08

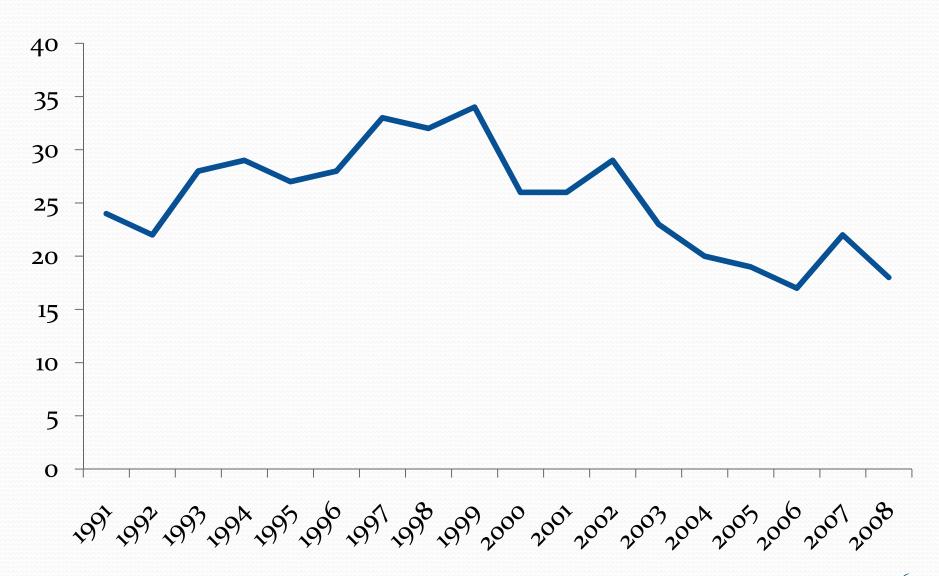
Balassa Index

$$RCA_{ij} = (X_{ij} / X_{it}) / (X_{nj} / X_{nt})$$

Where:

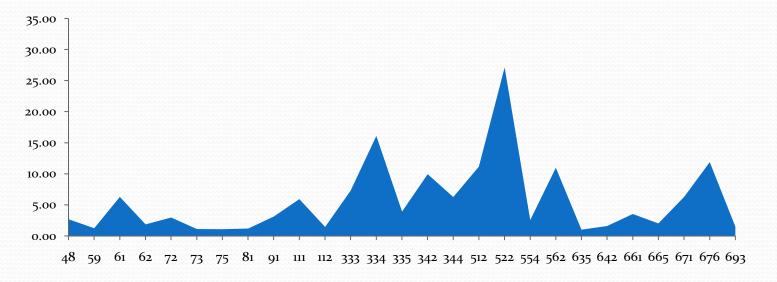
X = exports

i = country index

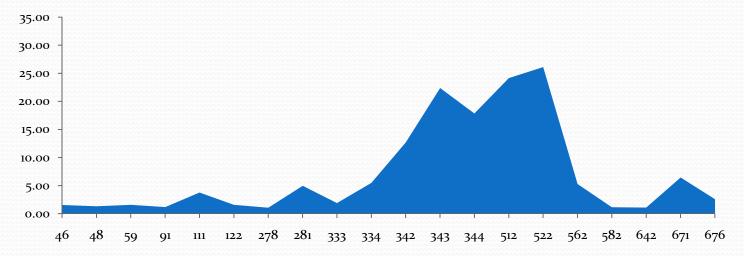

j = commodity index


n = set of countries

t = set of commodities


State	Value of Balassa Index	Result
State A	0-1	Industries with
		comparative
		disadvantage
State B	1-2	Industries with weak
		comparative advantage
State C	2-4	Industries with
		medium comparative
		advantage
State D	Greater than 4	Industries with strong
		comparative advantage

No of Industries with RCA > 1 (91-08)



RCA: Average 91 -93

RCA: Average o6-o8

	RCA91_93	RCA06_08
Mean	0.665046	0.628195
Median	0.028490	0.015216
Maximum	27.13540	26.12518
Minimum	0.000000	0.000000
Std. Dev.	2.549074	3.007380
Skewness	6.552863	6.795862
Kurtosis	55.78771	51.00832
Jarque-Bera	31678.49	26658.75
Probability	0.000000	0.000000
Observations	257	257

Galtonian Regression

- $RCA_{t2} = \alpha_0 + \beta_1 RCA_{t1} + e_{t2}$
- β = 1: there is no change in the degree of specialization between the two time periods.
- β > 1: the economy has become more specialized in its area of comparative advantage and less specialized in product categories in which it carried a low level of specialization.
- o < β < 1: product categories with initially high values of RCA experience a decline between the listed time periods whilst those with initially low scores experience growth over time and so overall a β score in this range indicates that the specialization pattern has not changed.
- If β < 0, it means that there is a sharp reversal in comparative advantage.

Dependent Variable: RCA06_08

Included observations: 257

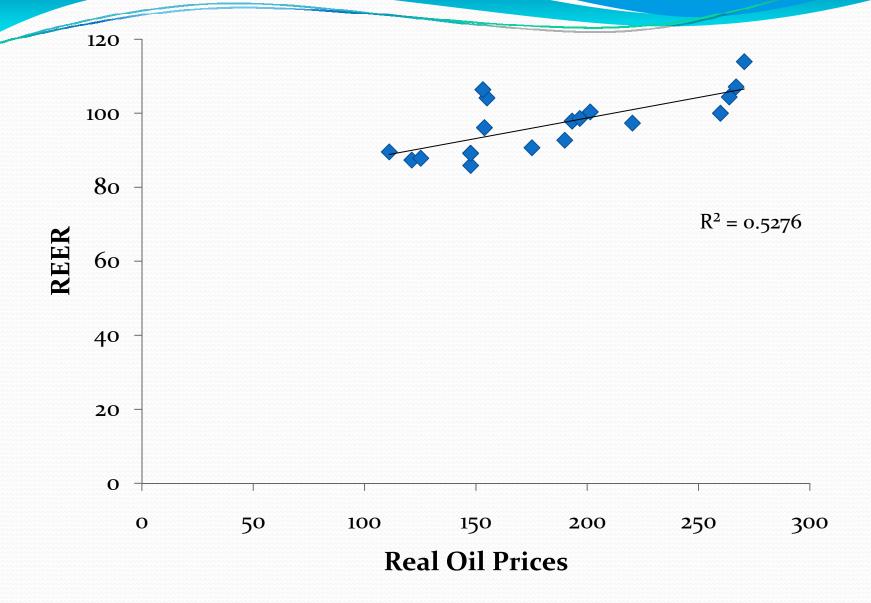
Coefficient	Std. Error	t-Statistic	Prob.
1.238186	0.051994	16.12086	0.0000
0.070763	0.136723	0.517567	0.6052
0.504741	Mean dependent	var	0.628195
0.502799			3.007380
2.120578	Akaike info criteri	ion	4.349007
1146.697	Schwarz criterion	1	4.376626
-556.8473	Hannan-Quinn cr	riter.	4.360114
259.8823	Durbin-Watson s	tat	1.232204
0.000000			
	1.238186 0.070763 0.504741 0.502799 2.120578 1146.697 -556.8473 259.8823	1.238186 0.051994 0.070763 0.136723 0.504741 Mean dependent 0.502799 S.D. dependent 2.120578 Akaike info criter 1146.697 Schwarz criterior -556.8473 Hannan-Quinn cr 259.8823 Durbin-Watson s	1.238186 0.051994 16.12086 0.070763 0.136723 0.517567 0.504741 Mean dependent var 0.502799 S.D. dependent var 2.120578 Akaike info criterion 1146.697 Schwarz criterion -556.8473 Hannan-Quinn criter. 259.8823 Durbin-Watson stat

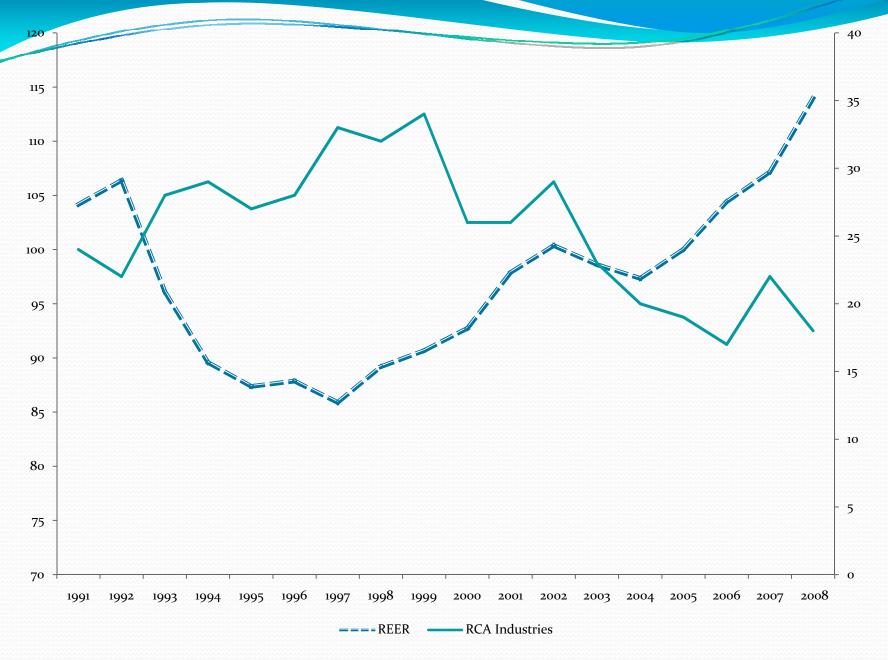
Wald Test

• Is $\beta = 1.23$ significantly different from 1?

Test Statistic	Value	df	Probability
F-statistic Chi-square	6.267875 6.267875	(1, 255) 1	0.0052 0.0048

Markov Chains and Transition Probability Matrix


- A Markov Chain may be simply defined as a sequence of random values whose probability values at time period t hinge on the value of the number in the time interval t-1.
- A transition probability matrix is defined as a square array of non negative numbers such that the rows tally to unity and represent a discrete Markov chain.

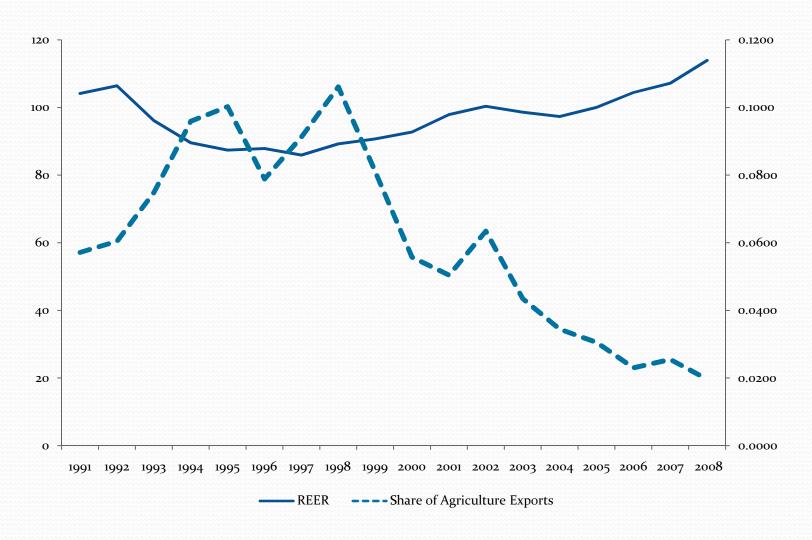

Markov Chains and Transition Probability Matrix

To

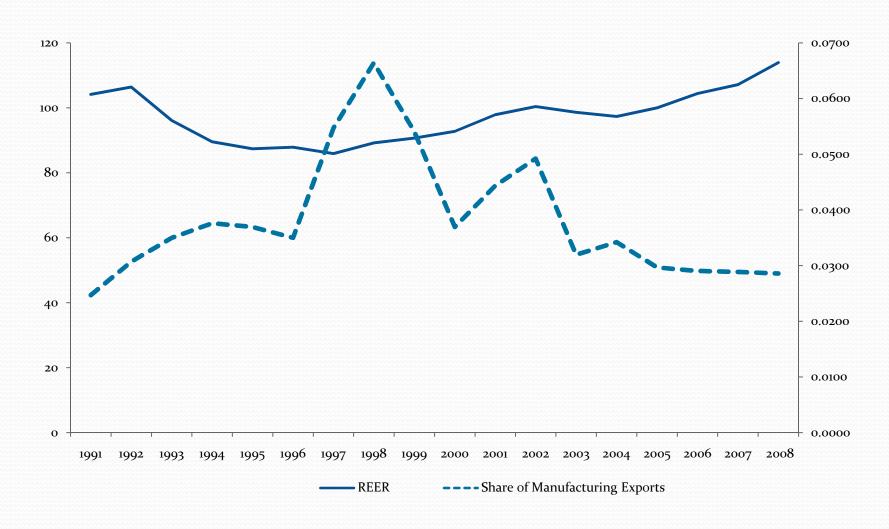
b d a C 0.974 0.017 0.000 0.009 a b 0.778 0.222 0.000 0.000 0.714 0.286 0.000 0.000 C 0.091 0.182 d 0.091 0.636

From

Mobility Indices


• Mobility indices attempts to reduce information about mobility from the transition probability matrices into one single statistic.

Mobility Index	Formula
Shorrocks Index (M_{1})	$\mathbf{M}_{1} = \mathbf{K} - \mathbf{tr}(\mathbf{P}) / \mathbf{K} - 1$
Bartholomew Index (M_2)	$\mathbf{M}_{2} = \mathbf{\Sigma}_{\mathbf{k}} \mathbf{\pi}_{\mathbf{k}} \mathbf{\Sigma}_{\mathbf{l}} \mathbf{p}_{\mathbf{k}\mathbf{l}} \left \mathbf{k-1} \right $
Shorrocks Index (M ₃)	$M_3 = 1 - det(P)$
Sommers and Conlisk (M_4)	$\mathbf{M}_4 = 1 - \lambda_2$


M4

<u>Period</u>	<u>M4</u>
91 - 92	0.167
91 - 93	0.010
91 - 94	0.182
91 - 95	0.021
91 - 96	0.065
91 - 97	0.196
91 - 98	0.032
91 - 99	0.073
91 - 00	0.069
91 - 01	0.135
91 - 02	0.179
91 - 03	0.183
91 - 04	0.188
91 - 05	0.188
91 - 06	0.280
91 - 07	0.287
91 - 08	0.377

REER vs. Share of Agriculture Exports

REER vs. Manufacturing Exports

Granger Causality

Granger Causality Test #1					
Lags: 2					
Null Hypothesis:	Obs	F-Statistic	Prob.		
Real Oil Prices does not Granger Cause RCA Industries	16	3.64525	0.041		
RCA Industries does not Granger Cause Real Oil Prices		2.01752	0.1793		
Granger Causality Test #2					
Lags: 2					
Null Hypothesis:	Obs	F-Statistic	Prob.		
REER does not Granger Cause M4		0.74092	0.499		
M4 does not Granger Cause REER		10.8825	0.0025		
Granger Causality Test #3					
Lags: 2					
Null Hypothesis:	Obs	F-Statistic	Prob.		
RCA Industries does not Granger Cause M4	16	2.07216	0.0723		
M4 does not Granger Cause RCA Industries		1.48528	0.2685		

Conclusion and Recommendations

- Shift in the pattern of specialization from the period 1991-93 to 06-08.
- Industries with weak comparative advantage have a high probability of moving towards being a position of a comparative disadvantage. This shows that there is mobility in pattern of trade.
- Dutch Disease phenomenon is very present in Trinidad and Tobago for the period 1991 - 2008
- Enact further policies to promote diversification of the economy so as to ensure that there is greater persistence in comparative advantage

Conclusion and Recommendations

- Put in place policies that promote competitiveness in manufacturing and services sectors so as to increase the value added within these sectors
- Continued development of the human capital of the country
- Create a culture of innovation and research and development