Inspecting the Mechanism: External Shocks and the ECCU

Garfield Riley

Research Department

Eastern Caribbean Central Bank

Prepared for 41st Annual Monetary Studies Conference

Georgetown, Guyana

November $10^{\text{th}} - 13^{\text{th}} 2009$

Outline

- Motivation
- Introduction
- Methodology
- Empirical Implementation
- Results
- Scenario Analysis
- Conclusion

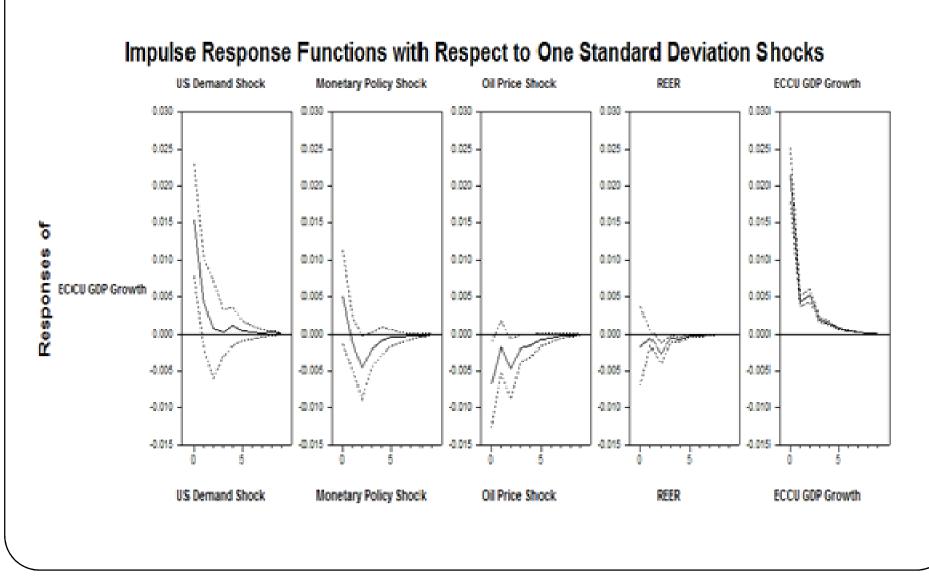
Introduction...

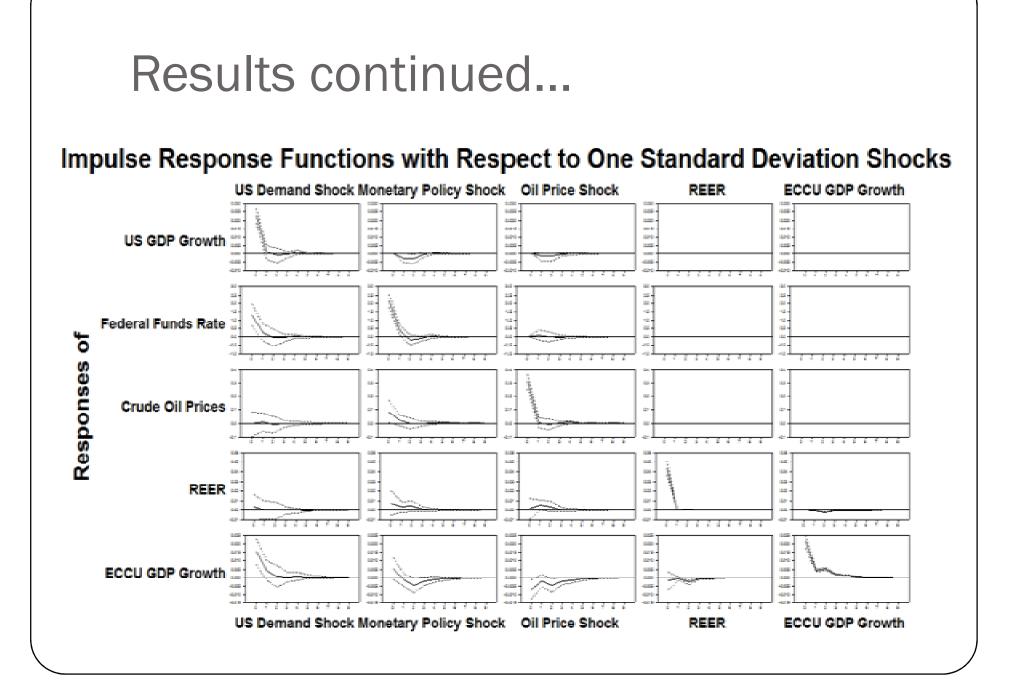
- ECCU highly exposed to external shocks by nature.
- Assessment of the impact of external shocks desirable.
- Provide insight on the adjustment mechanism.
- Beneficial tailwind from global economy 2002 2007.
- Central questions:
 - Can growth be achieved in a less benign international environment?
 - What has been the influence of external factors on growth?
 - How has the time path of the ECCU economy been altered?

Methodology...

- Standard assumption: SOE, foreign developments exogenous.
- Structural model: $G(L)x_t = \mu + \eta_t$
- Reduced form: $A(L)x_t = \delta + v_t$
- Identification: Choleski decomposition and block exogeneity of external variables.
- "near-VAR" structure: some equations have different RHS variables.
- Can estimate via OLS or SUR.
- Complementary approach: Bayesian VAR.

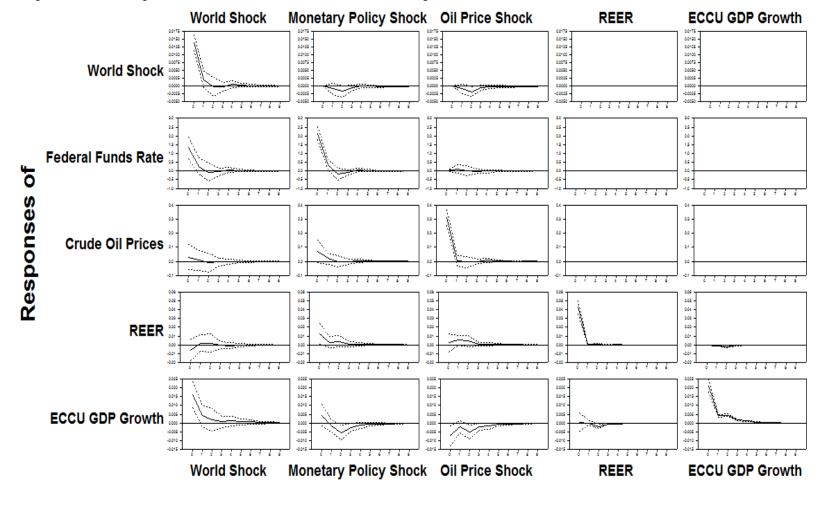
Methodology continued...


- Starting point: "Minnesota (or Litterman)" prior.
- Assumptions: Normal distribution, prior distributions centered on zero, except first own lag.
- Assumptions reduce computational and informational burden.
- Result: Prior determined by a few "hyper-parameters".
- Prior determined through:


 $S(i, j, l) = \frac{\{\gamma g(l) f(i, j)\} s_i}{s_j} \qquad f(i, i) = g(l) = 1.0$

Empirics...

- Relevant external factors: foreign demand, oil prices, global financial conditions.
- Domestic block: Real Effective Exchange Rate, Real GDP.
- System constructed as:
- $x_t = (\Delta y_t^{US} i_t^{US} \Delta c_t \Delta y_t^{ECCU} \Delta q_t)$
- Block exogeneity: shrink prior means on domestic variables in foreign equations towards zero.
- Less restrictive than near-VAR; allows for non-zero posterior if data strongly dis-agrees with the prior.


Results...

Results continued...

Impulse Response Functions with Respect to One Standard Deviation Shocks

Results continued....

Table 1: Variance Decomposition of ECCU Real GDP

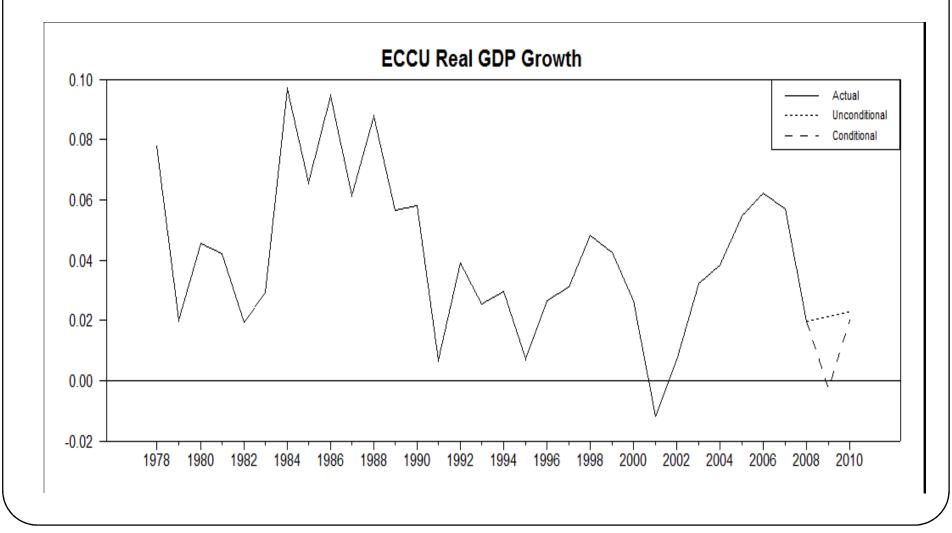
Horizon	US Demand Shock	Oil Price Shock	Monetary Policy Shock		
1	27.4	5.1	3.7		
2	29.4	6.1	5.3		
3	28.7	8.1	8.5		
4	28.8	8.6	9.1		
5	29.0	9.8	9.3		

Forecast Comparison...

- Bayesian VARs introduced into the literature to improve performance of conventional VARs.
- Assess how model performs relative to two benchmarks: Random Walk, conventional VAR.
- Standard forecast evaluation: RMSE, Theil U.
- Models estimated recursively after hold back period

Forecast comparison continued...

Table A2: Forecast Comparison


	Horizon	US Real	Theil	Federal Funds	Theil	Oil	Theil	REER	Theil	ECCU Real	Theil
		GDP	U	Rate	U	Prices	U		U	GDP	U
VAR	1	0.77	0.80	120.40	0.67	16.59	1.19	3.86	1.81	1.68	0.98
	2	0.77	0.60	133.10	0.45	25.80	1.48	2.70	0.99	2.13	0.79
	3	0.90	0.54	181.20	0.57	22.68	2.24	1.87	0.61	2.65	0.92
	4	1.84	0.82	168.40	0.71	24.52	5.60	1.50	0.44	2.10	0.96
BVAR	1	1.05	1.10	170.00	0.95	23.16	<mark>1.66</mark>	<mark>2.23</mark>	<mark>1.05</mark>	<mark>1.66</mark>	<mark>0.88</mark>
	2	1.27	0.98	210.40	0.71	<mark>23.72</mark>	<mark>1.36</mark>	<mark>1.36</mark>	<mark>0.50</mark>	<mark>1.93</mark>	<mark>0.72</mark>
	3	1.54	0.92	207.37	0.67	<mark>19.77</mark>	<mark>1.96</mark>	<mark>1.32</mark>	<mark>0.43</mark>	2.00	<mark>0.69</mark>
	4	1.90	0.97	199.36	0.83	<mark>21.38</mark>	<mark>4.88</mark>	<mark>1.63</mark>	<mark>0.48</mark>	<mark>1.90</mark>	<mark>0.87</mark>

Scenario analysis...

- Used to further assess relevance of external variables to ECCU macroeconomic dynamics.
- Conditional forecasts: constraint on future evolution of (certain) endogenous variables.
- Main uses: impose "judgment" on forecasts, what-if scenarios.
- Objective: generate future path of endogenous variables.
- Achieved by using historical data and orthogonal shocks to draw successively from the constrained distribution.
- Shocks generated randomly using Normal distribution.

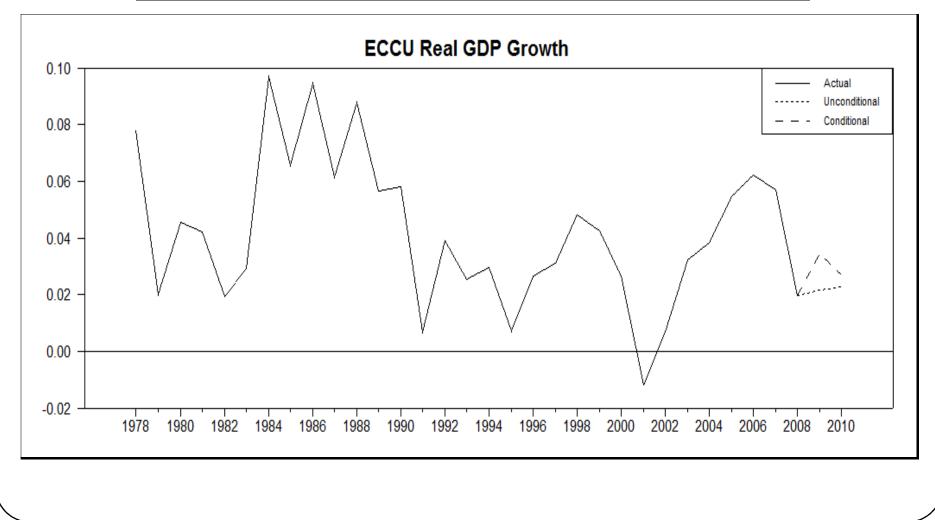

Scenario analysis continued...

Figure 3: Effects of a US Recession on ECCU Growth

Scenario Analysis continued...

Figure 4: Effects of a Reduction in Oil Prices on ECCU growth

To wrap up...

- Use of BVAR with block exogeneity restrictions.
- Revised version of Minnesota prior.
- Standard VAR tools impulse response functions and variance decompositions highlight vulnerabilities.
- US demand shocks highly expansionary.
- Financial shocks and oil price shocks contractionary.
- Vulnerability also comes through in scenario analysis.

Conclusion...

- ECCU will remain highly exposed to external shocks.
- Strengthen policy frameworks: reduce public debt; induce flexibility in fiscal budgets; improve risk-sharing mechanisms; diversify export structure.
- Economic Union can provides scope to pool resources and act as mechanism to transfer resources over varying states of nature.
- Caution: Study very preliminary; small sample size; future work can possibly include other activity variables, a policy variable, and other external variables; country-specific BVARs.

Thank you so much for listening!